SINBAD
Experimental Data in a Treebank of Suboptimal Structures

Sam Featherston, Ilona Steiner, and Wolfgang Sternefeld

SFB 441, Project A3
University of Tübingen
Germany
Talk Outline

- Introduction (WS)
- A3’s generatively tagged treebank: Sinbad
- Searching Sinbad (IS)
- Doing syntax with experimentally obtained judgements (SF)
- Conclusions
A3: Suboptimal syntactic structures

- Generative perspective on marginally grammatical structures
- Introspective judgements as data type
- Treebank of generatively tagged structures
- Experimental approach to gathering judgements
- Data/theory relationship
Conventional Treebanks

- Conventional treebanks are collections of documents.
- A document is a coherent sequence of utterances.
- Examples are newspaper articles, novels, transcriptions of dialogue recordings, historical texts, etc.
- Utterances from written documents are supposed to be grammatically well-formed.
Evidence from Conventional Treebanks

- The treebank is seen as a database of grammatical sentences together with their syntactic analyses.
- The linguist queries the treebank to find instances of a particular linguistic phenomenon.
- Only positive instances can be found. A particular structure may not be found a wide range of reasons.
- This type of linguistic argumentation provides information about what speakers *do* do, not about what any speaker *can* do.
Generative Linguistics

In the Chomskian framework, linguistic discussion uses a different paradigm: The core question is what speakers can and cannot do.

Linguists use introspective data: they make up possible and impossible examples which reveal what is and is not possible.

In this discourse, the data base considered as relevant is extended to include counter-examples.
Within the Generative paradigm, ungrammatical sentences provide **negative** evidence. A proposed linguistic analysis must generate the grammatical and exclude ungrammatical sentences.

But introspective judgements of (un)grammaticality of individual examples may vary considerably. Researchers may disagree with each other.
Suboptimal Structures

Chomsky originally assumed a dichotomy: Structures can be either grammatical or ungrammatical.

It is sometimes recognized nowadays this binary distinction is an over-simplification.

In the literature this is often acknowledged by admitting that judgements are only relative: a sentence marked * is worse than one without *.

Sentences can be suboptimal in the sense that they are neither perfect nor completely ungrammatical.
Suboptimal Structures

- Although suboptimal sentences and their structures play an important role in the discussion of current topics in linguistics, the situation within theory has still not changed substantially.

- Syntacticians still often idealize data to a binary model of grammaticality.

- Little attempt is made to put the suboptimality of the data on an intersubjective, quantitative basis.

- Little attempt is made to integrate suboptimality into the model of grammar.
Example of a Suboptimal Sentence

Perfect sentence:
Damit hat keiner gerechnet.
With-it has nobody reckoned.

Nobody expected it.

Suboptimal sentence:
Mit gerechnet hat da keiner.
With reckoned has it nobody.
Aims of the Project

- Provide an accessible database of controversial judgments.
- Provide the user with additional experimental evidence.
- Develop a model of grammar that accounts for suboptimality.
- Develop standards of comparison for intersubjective judgements of suboptimality.
Features of the Database

- Search for data and their judgements . . .
 - queries by key-words
 - queries by structure
- Make the treebank accessible to fellow linguists.
 - Open access via the internet.
 - Powerful query mechanisms.
The Sources of our examples

- Linguistics books and journal articles.
- Experimental data.
- Current size: ca. 1100 trees.
- Intended final size: about 3000 trees.
- Examples are chosen for their importance for theoretical questions.
Design Principles of the Annotation

- Problem:
 It may well be that “a sentence has as many structures as there are theories.” (H. Haider)

- Conventional treebanks pretend to avoid the problem by claiming that their annotation is “theory-neutral”.

- This is an illusion; there is no theory-neutral syntax.

- Our annotation is explicitly generative, since it aims to serve generative linguists.
Design Principles of the Annotation

- Compromise between
 - expectations of linguistically trained user;
 - standard assumptions of Generative Grammar;
 - my own (sometimes non-standard) assumptions about the structure of German;
 - simplicity of structure;
 - making it possible to formulate queries
 - better parsability.
The Annotation

- Trees are **binary** branching.
- Explicit annotation of movement and binding.
- We allow for traces and empty categories. (All trees are annotated **by hand**.)
- Annotation is sometimes selective: it is not comprehensive but focuses on theoretically relevant features of the structure.
- We can thus use just a very small and user-friendly set of morpho-syntactic categories.
The Annotation Scheme

- Part-of-Speech tags (a relatively small set)
- Morphological information (task-oriented, incomplete)
- Syntactic categories (node labels, only seven different categories)
- Grammatical functions (edge labels: head, adjunct, complement = a minimalist X-bar theory)
- Secondary edges for movement and coreference (basically “move” and “co-ind”)
- Additional contextual features (might facilitate queries, otherwise redundant)
Example Tree
Major Categories

A the category of adjectives and adverbials
C the category of complementizers and the position
 of the finite verb in main clauses
D the category of determiners, including intransitive
determiners like pronouns and proper names
N the category of common nouns
P the category of adpositions, i.e., pre- and postpositions
V the category of verbs
R a the rest: category for anything that does not fit into
 the other categories
Database of Information on Trees

Information available for each tree beyond the structure:

- Source of the example,
- Judgement of example in source,
- Set of structurally similar trees.
Summary

- First treebank for German with analyses in a GG framework.
- First treebank of suboptimal sentences with their grammaticality ratings.
- Powerful structural search facilities (more powerful than anything else on the market).
- Fully accessible via the internet.
SINBAD in the WWW

Address of SINBAD:

http://barlach.sfb.uni-tuebingen.de/~a3/

The next steps:

- A demonstration of the search tool fsq, developed by Stefan Kepser in project A2. (Ilona Steiner)
- An illustration of the experimental work on judgements done in A3. (Sam Featherston)